Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Infect Dis ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2313064

ABSTRACT

Reverse transcriptase polymerase chain reaction (RT-PCR) tests are the gold standard for detecting recent infection with SARS-CoV-2. RT-PCR sensitivity varies over the course of an individual's infection, related to changes in viral load. Differences in testing methods, and individual-level variables such as age, may also affect sensitivity. Using data from New Zealand, we estimate the time-varying sensitivity of SARS-CoV-2 RT-PCR under varying temporal, biological and demographic factors. Sensitivity peaks 4-5 days post-infection at 92.7% [91.4%, 94.0%] and remains over 88% between 5 and 14 days post-infection. After the peak, sensitivity declined more rapidly in vaccinated cases compared to unvaccinated, females compared to males, those aged under 40 compared to over 40 s, and Pacific peoples compared to other ethnicities. RT-PCR remains a sensitive technique and has been an effective tool in New Zealand's border and post-border measures to control COVID-19. Our results inform model parameters and decisions concerning routine testing frequency.

3.
BMC Infect Dis ; 21(1): 1119, 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1561534

ABSTRACT

BACKGROUND: Diagnostic testing using PCR is a fundamental component of COVID-19 pandemic control. Criteria for determining who should be tested by PCR vary between countries, and ultimately depend on resource constraints and public health objectives. Decisions are often based on sets of symptoms in individuals presenting to health services, as well as demographic variables, such as age, and travel history. The objective of this study was to determine the sensitivity and specificity of sets of symptoms used for triaging individuals for confirmatory testing, with the aim of optimising public health decision making under different scenarios. METHODS: Data from the first wave of COVID-19 in New Zealand were analysed; comprising 1153 PCR-confirmed and 4750 symptomatic PCR negative individuals. Data were analysed using Multiple Correspondence Analysis (MCA), automated search algorithms, Bayesian Latent Class Analysis, Decision Tree Analysis and Random Forest (RF) machine learning. RESULTS: Clinical criteria used to guide who should be tested by PCR were based on a set of mostly respiratory symptoms: a new or worsening cough, sore throat, shortness of breath, coryza, anosmia, with or without fever. This set has relatively high sensitivity (> 90%) but low specificity (< 10%), using PCR as a quasi-gold standard. In contrast, a group of mostly non-respiratory symptoms, including weakness, muscle pain, joint pain, headache, anosmia and ageusia, explained more variance in the MCA and were associated with higher specificity, at the cost of reduced sensitivity. Using RF models, the incorporation of 15 common symptoms, age, sex and prioritised ethnicity provided algorithms that were both sensitive and specific (> 85% for both) for predicting PCR outcomes. CONCLUSIONS:  If predominantly respiratory symptoms are used for test-triaging,  a large proportion of the individuals being tested may not have COVID-19. This could overwhelm testing capacity and hinder attempts to trace and eliminate infection. Specificity can be increased using alternative rules based on sets of symptoms informed by multivariate analysis and automated search algorithms, albeit at the cost of sensitivity. Both sensitivity and specificity can be improved through machine learning algorithms, incorporating symptom and demographic data, and hence may provide an alternative approach to test-triaging that can be optimised according to prevailing conditions.


Subject(s)
COVID-19 , Pandemics , Bayes Theorem , Humans , Multivariate Analysis , New Zealand/epidemiology , SARS-CoV-2
4.
Lancet Public Health ; 5(11): e612-e623, 2020 11.
Article in English | MEDLINE | ID: covidwho-857311

ABSTRACT

BACKGROUND: In early 2020, during the COVID-19 pandemic, New Zealand implemented graduated, risk-informed national COVID-19 suppression measures aimed at disease elimination. We investigated their impacts on the epidemiology of the first wave of COVID-19 in the country and response performance measures. METHODS: We did a descriptive epidemiological study of all laboratory-confirmed and probable cases of COVID-19 and all patients tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in New Zealand from Feb 2 to May 13, 2020, after which time community transmission ceased. We extracted data from the national notifiable diseases database and the national SARS-CoV-2 test results repository. Demographic features and disease outcomes, transmission patterns (source of infection, outbreaks, household transmission), time-to-event intervals, and testing coverage were described over five phases of the response, capturing different levels of non-pharmaceutical interventions. Risk factors for severe outcomes (hospitalisation or death) were examined with multivariable logistic regression and time-to-event intervals were analysed by fitting parametric distributions using maximum likelihood estimation. FINDINGS: 1503 cases were detected over the study period, including 95 (6·3%) hospital admissions and 22 (1·5%) COVID-19 deaths. The estimated case infection rate per million people per day peaked at 8·5 (95% CI 7·6-9·4) during the 10-day period of rapid response escalation, declining to 3·2 (2·8-3·7) in the start of lockdown and progressively thereafter. 1034 (69%) cases were imported or import related, tending to be younger adults, of European ethnicity, and of higher socioeconomic status. 702 (47%) cases were linked to 34 outbreaks. Severe outcomes were associated with locally acquired infection (crude odds ratio [OR] 2·32 [95% CI 1·40-3·82] compared with imported), older age (adjusted OR ranging from 2·72 [1·40-5·30] for 50-64 year olds to 8·25 [2·59-26·31] for people aged ≥80 years compared with 20-34 year olds), aged residential care residency (adjusted OR 3·86 [1·59-9·35]), and Pacific peoples (adjusted OR 2·76 [1·14-6·68]) and Asian (2·15 [1·10-4·20]) ethnicities relative to European or other. Times from illness onset to notification and isolation progressively decreased and testing increased over the study period, with few disparities and increasing coverage of females, Maori, Pacific peoples, and lower socioeconomic groups. INTERPRETATION: New Zealand's response resulted in low relative burden of disease, low levels of population disease disparities, and the initial achievement of COVID-19 elimination. FUNDING: Ministry of Business Innovation and Employment Strategic Scientific Investment Fund, and Ministry of Health, New Zealand.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Epidemiologic Studies , Female , Humans , Infant , Male , Middle Aged , New Zealand/epidemiology , Risk Factors , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL